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A COHERENT NONLINEAR THEORY OF AURORAL KILOMETRIC RADIATION:
II. DYNAMIC INTERACTIONS

I. Introduction

In a recent paper [Grabbe, et al. 1980], a theory of auroral

kilometric radiation was proposed, in which electromagnetic noise is
amplified by interaction with low frequency coherent quasineutral
density fluctuations created by electrostatic ion cyclotron (EIC)
waves, in the presence of precipitating auroral electron beams. The
result is a three-wave parametric process in which a beat wave is
produced that can interact with the beam, much like the theory of

Palmadesso, et al [1976]. It was found that when the wave frequency

is in the right range, the electromagnetic wave is negative energy in
the rotating frame of the beam electron and undergoes a convective
instability. The basic requirements for the instability were found
to be:

(1) Minimum beam density:

n k_(Av)?
( b ) N z 1)
n 2wV
o ce b
where ny and & are the beam and plasma density, respectively, Vb and

Av the beam velocity and thermal spread in velocity space, kz the

wave vector component along the magnetic field, and Wee the electron

cyclotron frequency.

(2) Accessibility to free space (w > we where We is the right hand

cutoff):

2 2
Woe <k, vy W (2)

Manuscript submitted November 7, 1980.
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(3) Frequency range:

n,
Sw +%k v 3

w
ce z b

Condition (1) typically requires n 3 10_3 e and condition (2) typi-

cally requires local depletion of the plasma density such that

y
wpe < 0.2 W The latter is in very good agreement with the observed

density depletion [Benson .nd Calvert, 1979].

Combining conditions (1) - (3) gives the following limits on

the frequency and propagation directioas of the wave for amplification

2

w
—pe
Wea + m < w < W.g + kz vy (4)
ce
wg: 2mce vbnb
kvw < cos B <y (Av) *n (%)
b ce o

Eq. (4) gives radiation in a narrow frequency just above the right
band cutoff, while Eq. (5) normally limits the propagation to be
almost (but not quite) perpendicular to the magnetic field [Grabbe,
1980]. Furthermore, the O-mode has no such unstable frequency range,
hence the X-mode is the predicted polarization. All of these pre-
dictions are in excellent agreement with observation.

The above concfusions were based on a steady state model, in
which amplitude of the density fluctuations was assumed to be approxi-
mately constant. This is valid if the energy in the density fluc-
tuations is replenished by the beam or other sources at approximately

the same rate as it is being used up. However, the Feynman diagram
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for the three-wave process (Fig. 1) reveals that a more dynamical

process 1is taking place. Not only is energy being resonantly trans-
ferred from the density fluctuation to the electromagnetic wave in the
appropriate frequency band because of the beam, but the energy the
beam injects into the beat wave is being transferred back to the
density fluctuations and the electromagnetic wave because of a finite
three wave coupling coefficient. This coupling coefficient was ignored
in the steady state theory, but must be included to understand the full
dynamical process.

The purpose of this paper is to study the dynamics of the full
three wave process, including temporal variations in the density fluc-
tuations and a finite three-wave coupling coefficient, in order to
confirm the predictions of the steady state theory. In Sec. II we
introduce a set of coupled nonlinear rate equations for the evolution
of each of the three waves in the Feynman diagram, and discuss steady
state solutions. Several numerical solutions of these equations are

presented and discussed in Sec. III for various typical parameters.

The principle comclusions are summarized in Sec. IV,
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Fig. 1 — Feynman diagram for the three-wave interaction involved in the amplification of
radiation to produce auroral kilometric radiation. The processes numbered are (1) induced
absorption, (2) beam amplification, (3) induced (and spontaneous) emission, and (4) reso-
nant amplification. The rate coefficient for each process is shown.




II. Dynamical Model

] The dynamical processes involved in the amplification process

! which produces the AKR are summarized in the three-wave Feynman diagram

i in Fig. 1. These processes are (1) Induced absorption of the X mode by
the density fluctuations to create the quasimode or beat wave (2) Beam
amplification of the beat wave (3) Spontaneous and induced emission of
the X-mode by the beat mode (4) Resonant interaction between the density
fluctuations and the X mode in which energy is transferred to the X mode.
The conditions for the last process were given in the introduction, and

the resulting spatial growth rate was given by Eq. (28) in Grabbe, et al

[1980]:
Jar 271/2
@ &)

We want to formulate the rate equations for the aforementioned
processes in terms of the (quantum) occupation number density of the

waves.

N, = I£.12/ 8no, 2
J ]

where § is the wave electric field. We designate No as the number
density of the X-mode, Nl for the density fluctuations, and Nb for

- . the beat wave. We then have the following contributions to the rate

equation for each process numbered in Fig. 1:
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where W is the three wave coupling coefficient [Tsytovich, 1974]:
2 3 2 i
€ Woi w e Mi »
W= 3 g > (9 3
8mm ~ w” v, k '
e Te
(2) Beam amplification.
dNb
ac - o™ (10)

where we take the beam driven growth rate of the quasimoder to be the

; usual form for a beam plasma instability [Briggs, 1964]:

1/3
"b
[, = 2Imwn 1.4 (-——) w (11)
n pe
o
g (3) Spontanecus and induced emission.
{ .
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T W Nb(l+N0+Nl) {12t)

dNb

&4 T A Nb(1+N0+N1) (12¢)

The spentaneous emission term (first term on the right hand) is normally

negligible, since normally No >> 1 or N. >> 1 (No and Nl’ taken as

1

dimensionless occupation numbers).

4) Resonant interaction.
dN
O = /2 r-‘
dt h YNONll (l3d)
dN
1 /2 _
T ‘YNoNll (13b)

Here the dependence of the resonant growth rate I of the X-mode on the

density fluctuation N, has been explicitly factored out:

1
r o= \(Nll/z (14)

Here the temporal growth rate can be expressed in terms of the spatial
growth rate by multiplying by the group velocity
r = 2«xe¢ (15)
where the factor 2 represents the conversion between electric field
growth rate an the quantum density growth rate. Thus from Eq. (6)
(Zv)%u m3/2e
g 2 (16)

aere

at its maximum value.

Combining, (1), (2), (3), (4) we find the complete set of

equations to be

- kN i

p—-—s
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o _ /2
& = W(NbNO+NbN1—NON1) + YNONll (17a)
dN

1 1/2

it W(NbNo+NbN1—NON1) - YNONl (17b)
dNb
Tt_ = Zw(NoNl_NoNb_Nle) + FbNb (17¢c)

These are the central equations we want to solve for AKR evolution.
Before obtaining numerical solutions of the equations we want

to first examine them for steady state solutions. 1If we consider the

limit of constant density fluctuations le/dt = 0, the case analyzed

in our steady state theory, we find

dN 1/2

Ty = ZyNON1 (18)

This result shows that the X-mode grows at twice the rate determined

in our steady state [Grabbe, et al., ]1980]. This result can be under-

stood by noting the two processes which transfer energy to the X mode:
(3) transfers energy from the beat wave to the X mode and density
fluctuations at equal rates; (4) transfers energy from the density
fluctuation to the X-mode. Both processes (3) and (4) must occur at

equal rates for the density fluctuation to achieve a steady state.

Since the steady state model only considers the contribution of

process (4), it only gives one-half of the growth rate,

it chatiiin, safd AN
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IIT. Numerical Results
To obtain typical values for the growth rates and ooupling
coefficient we use Eqs. (9), (11) and (16). If we take typical source
Va3
. N v N ; .
region values ng 10 n s wpe 0.2 W.qo nlNO.B 0.5 n, we find the following

normalized values when the Na's are normalized to dimensionless values

Ty Y6 x 10% sec! (19a)
Ny Lo 4 -1

T =y N?>6x10 sec (19b)

% o~ 0.05 sec (19¢)

v
Here Na (ez/mezczw)Na, ¢ = (e/mec/a ) and W = (mzcz/ez)w. These values

will be used as a guide for input to the numerical calculations.

The kinetic equations in Eq. (17) were solved for several values
of the growth rate and initial conditions, although the initial value

of N, was always set to the normalized value on 1. A classical Runge-Kutta

1
integration routine was used initially but proved to be too inefficient,
so it was replaced by a stiff integration scheme called CHEMEQ [XEEEE’
1980]. A sampling of the results is shown in Figs. 2-4. Included in the
graphs is the ratio of the time dependent growth rate T*(t) to the

resonant growth rate T, where

dN
o

— = L3

& = *ON . (20}
The graphs show that there are two principle stages of growth

of the X-mode. In the initial stage the growth rate is just the

resonant growth rate dNo/dt=YNoN The reason for this stage is that

1
not much energy has been transferred into the beat wave, so all of the

X-mode energy is coming from the density fluctuations. This stage

Cr AR b i
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Fig. 2 — Growth and saturation of the X mode radiation for the initial conditions and rate
coefficients shown. The values shown are for the normalized form given by Eq. (19). Note
that the radiation grows in two principal stages: in the first, the wave grows primarily on
energy from the EIC density fluctuations, and temporarily saturates; in the second the wave
grows to very large amplitudes because of energy coupled in from the beam via a beat wave

then finally saturates.
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Fig. 3 — Same as Fig. 2 for a slightly different set of rate coefficients.
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Fig. 4 — Graph of the ratio of the growth rate of the wave as function of time to that
found in the steady state theory, for the conditions in Fig. 3. Note that it is normally
2n. for various non-negative integer values of n.
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normally saturates when most of the energy in the density fluctuations

is absorbed. The second stage starts when a significant amount of energy
has been pumped into the beat wave by the beam, and this energy begins
being transferred to the density fluctuations and the X-mode. This
second stage grows at dNo/dt=2yNoN?, or twice the resonant growth rate.

The graphs of I'*(t)/I'=y*(t)/y shows the»e may also exist subsequent

!
1

etc., Then the process reaches a final level of saturation when almost

stages in which the growth rate occurs at dNo/dt=4yNoN?, dNO/dt=8yNoN
all of the energy of the density fluctuations and the beat wave has been
depleted. The stages of growth confirm that the rate of growth is
governed by the resonant growth rate F=YN?, as predicted by the steady
state theory.

A comparison of the saturation amplitude of the X-mode shows
that it always is several orders of magnitude above the initial value
of the density fluctuations Nl(t=0). This shows that virtually all of
the energy comes from the beam, rather than from the initial level of
the density fluctuations. Furthermore, when Fb is varied en sample runs
with all other parameters being held constant, then the saturation
amplitude increases as Tb is increased; thus, Tb determines the total
energy the electromagnetic wave can absorb. A statistical analysis of

the saturation level No from many sample runs reveals the

sat

scaling law

4/3
0 sat v rb (21)

From Eq. (11), we have the dependence on the relative beam density




| A derivation of this scaling law is given in the Appendix.

A comparison has been made on sample runs for different initial

values of Nl‘ all other parameters held constant. It is found that
although the growth rate of the X mode increases linearly with Nl, the .

1 saturation amplitude is relatively independent of the initial value of

Nl! The significance of this for the growth process in the finite

density depleted cavity introduced in the steady state model [Grabbe,

et al,, 1980} is the following. If the X-mode saturates before propagating

out of the growth region in the cavity, then an increase in the initial

J levels of the density fluctuations does not have a very important effect

on level of AKR produced. However, if the X-mode propagates out of the
growth region before reaching its saturation level, increasing the
initial level of the EIC density fluctuations would bring the AKR closer i
to its saturation value, Calculation done in the steady state model

would suggest the former case occurs more often than the latter.

14




Iv. Summary and Conclusions

We have formulated the dynamics of the three-wave process
involved in amplification of the X-mode to produce AKR in terms of a
set of coupled rate equations. An analysis of these coupled rate
equations has confirmed the conclusions drawn from the steady state
theory. It was found that the growth rate was determined by the
resonant growth rate found in the steady state. The growth was seen
to occur in stages: an initial stage in which the growth rate was
just the resonant growth rate, and subsequent stage of growth at 2"
times the resonant growth rate, where n=1,2,3,,,.. This is followed by
a saturation of the wave.

It was found that the AKR could saturate at 108-1010 times
the initial (noise) levels. This is adequate to produce the observed
levels of AKR. Almost all of this energy comes from the beam, and the
saturation amplitude was seen to scale as Fba/B, so that the growth
rate of the beat wave determines the total energy the electromagnetic
wave can absorb. Finally, it was found that for sufficiently large

density cavities with growth regions, the saturation level of AKR is

relatively independent of the initial level of the EIC density fluctuations.
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